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TECHNICAL MEMORANDUM X-598

TRANSONIC AND SUPERSONIC FLUTTER TREND INVESTIGATION

OF A VARIABLE-SWEEP WING*

By John C. Stonesifer and Robert C. Goetz

SUMMARY

An exploratory flutter trend investigation of a tapered variable-

sweep wing design has been made in the Langley transonic blowdown tun-

nel and in the Langley 9- by 18-inch supersonic aeroelastlcity tunnel

at Mach numbers from about 0.50 to 2.55. Three planforms were tested

in order to represent the varlable-sweep wing in three sweep positions.

These planforms had inboard panels which were swept back 60 ° at the

leading edge, whereas the outboard panels were swept back 25 ° , 60 ° ,

and 75 ° at the leading edge. The assumed pivot point was located on

the quarter chord of the outboard panel at about 25-percent exposed

semlspan of the 60 ° configuration. The models were of simple construc-

tion and did not simulate Joint flexibility.

The results at transonic Mach numbers indicate a favorable increase

in flutter speeds as the wing sweep angle is increased. At supersonic

Mach numbers the 25° sweptback wing exhibited the highest flutter speeds.

An appreciable difference between data obtained in the two tunnels is

attributed to the different values of mass-density ratio obtained at
flutter in the two test facilities.

INTROI_CTION

w

f

An airplane combining the characteristics of low-speed efficiency

and supersonic-cruise ability would be useful in many operations. In

general_ however, the dual requirements of low-speed efficiency and

supersonic flight are not compatible. In order to accomplish this

mission, one would have to compromise the performance of the aircraft

or be able to alter its configuration in flight. One method of altera-

tion incorporates variation of the wing sweep by rotating the outer wing
panels while the inboard panels remain fixed.

*Title, Unclassified.
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The use of a variable-sweep configuration, being a new concept,

necessitates the need for information that would permit the prediction

of its flutter trend characteristics. The purpose of this report is to

present the data obtained in an exploratory investigation of the flutter
characteristics of a variable-sweep wing in three fixed-sweep positions.

The data were obtained in the Langley transonic blowdown tunnel

and in the Langley 9- by 18-inch supersonic aeroelasticity tunnel at

Mach numbers from about 0.90 to 2.59. Three planforms were tested in

order to represent the varlable-sweep wing in three sweep positions.
These planforms had inboard panels which were swept back 60° at the

leading edge, whereas the outboard panels were swept back 25°, 60°,

and 7_° at the leading edge. Th_ assumed pivot point was located on

the quarter chord of the outboard panel at about 29-percent exposed

semispan of the 60° configuration. The models were of simple con-
structlon and did not simulate Joint flexibility.

It is recognized that reliable flutter information for a given

design would require a more realistic model which simulates the design

stiffness, mass distribution, and Joint flexibility; h@wever, it is

believed that the present data will be useful for preliminary
considerations.
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SYMBOIS

a

b

ff

fh, i

m

M

q

speed of sound, ft/sec

structural streamwlse semichord at root, ft

streamwise semichord at station y, ft

flutter frequency, cps

measured bending frequencies (i = l, 2, 3), cps

measured first torsion frequency, cps

exposed semispan, ft

mass of one exposed wing panel, slugs

Mach number

dynamic pressure, lb/sq ft
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exposed area of one wing panel, sq ft

V stream veloclty, ft/sec

Y distance from root chord spanwise, ft

A sweepback of leading edge of outboard part of wing, deg

mass-density ratio, nondimensional,
m

air density, slugs/cu ft

_k measured first torsion frequency, 2_f_, radians/sec

Subscripts:

A pertaining to average values for left and right panels of con-
structlon A models having the same planform

adj value adjusted to what it would be for construction A

mln minimum adjusted value of 25 ° configuration

MODELS

The three planforms shown in figure i were investigated. Each

planform had NACA 65A005.5 airfoil sections normal to the leading edge

and an inboard part of the wing swept back 60° along the leading edge.

The outboard panels of the different planforms were swept back 25°,
60°, and 7_° along the leading edge.

These three configurations simulate planforms that would result

as the outer panels are rotated to vary the sweep angle. The assumed

pivot point was located on the quarter chord of the outboard panel at
about 25-percent semispan of the 60° configuration. The division

between the inboard and outboard panels is shown in figure 1. In an
airplane with a variable-sweep wing, provision must be made to enclose

that part of the wing which disappears as the sweep of the outer panels

is increased. Depending on how this is accomplished, the wing trailing
edge might not be a straight continuous line near the root as it was

for the present models. (See fig. 1.) Therefore, in order to provide

some structural consistency for the present models, the structural root

chord was arbitrarily made the same (5.55 inches as shown in fig. l)

for all three planforms by cutting the root chords at the trailing edges
for the 25° and 75° swept wings. -- ,
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The models were machined from solid Formica. In order to obtain

flutter throughout the dynamic-pressure range available in the tunnels,

it was necessary to reduce the stlffnesses of some of the models. The

stiffness reductions were accomplished by cutting a pattern of holes

and slots through the outboard panels normal t0the chord plane. The

inboard part of the wing was not drilled or slotted for it is believed

that for an airplane wlth a varlable-sweep wing this fixed inboard wing

area will have to be comparatively stiff to support the sweep mechanism

and carry the loads. For models with holes and slots_ the wings were

wrapped wlth a layer of sllk which was doped and painted to provide a

leakproof surface. The solid models are referred to herein as construc-

tion A, and models with progressively larger holes and longer slots, and

thus progressively reduced stiffnesses, are referred to as construc-

tions B, C, D, and E. A photograph of a drilled and slotted semispan

model (construction E) is shown In figure 2.

Physical characteristics of all wing panels tested are listed in

table I. Both full-span and semlspan sting-mounted models were used in

the transonic tests. Wall-mounted semispan models only were used in the

supersonic tests. In the transonic tests, although the boundary condi-

tions for the full-span and semispan models are dlfferent_ experience

with these models and past experience with similar models has shown that

the flutter speed is not affected. In many cases, the same model was

used for several flutter points before it was damaged or destroyed. A

model used in more than one run was checked for structural damage by

visual inspection and by comparing natural vibration frequencies of the

model obtained before and after each run.

Table I also presents the measured natural vibration frequencies

and the ratios of the first and second bending frequencies to the first

torsion frequency for the various models investigated. For a given

planform, the frequency ratios are shown to be relatively constant as
the method of construction Is changed. The natural vibration node lines

for the various methods of construction also remained relatively constant

for a given planform and are shown In figure 3- For the determination of

the natural frequencies and node lines, each model was clamped to a steel

bench in such a manner that each wing panel could be considered as canti-

levered from the root-clamplng block. (See flg. 2.) An acoustical shaker

was used to excite the models. Sand grains sprinkled on the wing surface

were used to identify the node lines.
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APPARATUS AND TESTS

Transonic Tests

The tests were conducted in the Langley transonic blowdown tunnel

for the Mach number range from 0.50 to 1.30. The transonic blowdown
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tunnel has an octagonal test section with a slot in each corner and

measures 2_ inches between flats. During operation of the tunnel a
w

preselected Mach number is set by means of a variable orifice down-

stream of the test section. This Mach number is held approximately

constant after the orifice is choked, while the stagnation pressure,
and thus the density, is increased. However, the area of the orifice

may also be varied during a run as the stagnation pressure is increased
or held constant so that various operating paths of Mach number and

density may be followed. Both methods of operation were used in the

present investigation and are illustrated in figure 4.

The statlc-denslty range is approximately O.O01 to 0.012 slug per

cubic foot. It should be noted that, because of the expansion of the

air in the reservoir during a run, the stagnation temperature contin-

ually decreases so that the test-section velocity is not uniquely
defined by the Mach number. Additional details of the tunnel are
contained in reference 1.

The models were mounted on a l_-- inch-diameter sting which formed

a fuselage that extendedupstream into the subsonlc-flow region of the
tunnel. This arrangement prevented the formation of shock waves from

the fuselage nose which might reflect from the tunnel walls onto the

model. The 65-pound sting was considered to form a rigid mount for the

models since the mass of the complete support system was very large

compared with the mass of a model. The fundamental frequency of the
support system was approximately 14.5 cycles per second.

An optical system displayed an image of the model on a ground-

glass screen during the runs. When flutter was observed, the airflow
was quickly stopped in an effort to save themodel from destruction

by flutter. " "

Supersonic Tests

The Langley 9- by 18-inch supersonic aeroelasticity tunnel is a

conventional fixed-nozzle blowdown-type wind _unnel exhausting into a

vacuum sphere from a pressure reservoir. The nozzles used gave Mach

numbers of 1.30, 1.64, 2.00, and 2.55. At each Mach number, the test-

section density varies continuously to a controlled maxlmum density

and then decreases. Maximum test-sectlon conditions are depicted in
the tunnel performance curves shown in figure 5.

For each Mach number in the supersonic tunnel, the test procedure

was essentially the same. The sphere to which the tunnel exhausts and

the test section were pumped down to a pressure of approximately

-__......Iu_l_L
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2 pounds per square inch absolute. The control valve upstream of the

test section was then opened and the test-section density was allowed

to increase until flutter was observed or the maximum density was

reached.

The models were cantilever-mounted in a mounting block. The

mounting block, in turn, was attached to the head of a ram that was

used to retract the models through one side of the tunnel in an effort

to save the models from destruction after the onset of flutter. The

models were viewed through a window in the opposite side of the test

section.

Instrumentation

Resistance-type, electrical strain gages were mounted on the sur-

face of all models near the root to establish the occurrence of flutter

and to indicate the frequency of the flutter oscillation. These gages

were oriented so as to indicate as nearly as possible the separate

bending and torsional strains of the wings. A multichannel recording

oscillograph was employed to record the time history of the straln-gage

signals and the tunnel conditions during the runs. High-speed motion

pictures furnished a visual record of the model motions.
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RESULTS AND DISCUSSION

The basic results of this investigation are presented in table II.

The first three columns identify the models as to construction, model

number, and full span or semispan. Two full-span models (models l0

and ll) were tested also as semlspan models after the right panels were

damaged by flutter. The column labeled "wing-panel behavior" contains

a code system defined at the bottom of table II to describe each data

point. The low damping behavior indicated by the code letter D is char-

acterized by a period of intermittent bursts of slnusoidal oscillations

which sometimes obscured the exact start of flutter. Flutter frequencies

as obtained Irom the straln-gage traces are given in the column labeled

ff. In most cases, the flutter appeared to be of a limited amplitude

type.

The flutter and no-flutter points from table II are plotted in fig-
V

ure 6 in the form of the nondimensional flutter-speed index as a

function of Mach number. It should be noted that for a given planform
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Thus the flutter-speed index is adjusted for variations of the dynamic

pressure by the mass and torsional-frequency characteristics of the
models.

For a variety of configurations, past experience has shown that the

conventional transonic variation of flutter-speed index with Mach number

is an almost constant value to a point near M = 1 and then, after a

slight decrease, increases wlthMach number. Figure 6 indicates that all

three planforms exhibit this conventional variation, but to a different

degree for each planform. However, the supersonic flutter boundary for
each planform exhibits somewhat unusual behavior in that the boundaries

obtained in the two wind tunnels do not fair together but show a defi-

nite difference at M = 1.3, a Mach number common to both facilities.

Each flutter boundary as shown is composed of two segments. The two

segments when considered separately do, however, resemble conventional
flutter trends.

It should be noted that, of the several methods of model construc-

tion, only construction E models could be fluttered in the supersonic
tunnel. A comparison of construction E models with those of other con-

structlons showed there was no shift in model center-of-gravity position
or noticeable change in frequency ratio or node line characteristics to

cause the difference in the data. A further look at other model prop-
erties and test conditions indicates that the difference in the data is

most likely due to the different values of mass-density ratio obtained

at flutter in the two tunnels. A comparison of density ranges of the

two tunnels is presented in figure 7. For these densities, the mass-
density ratio at flutter for models tested in the transonic tunnel

ranged from about 8 to 30 as compared with 36 to 56 in the supersonic
tunnel.

Some support for attributing this difference in the data to density

difference between the two tunnels is offered by figure 8. In this fig-
ure, data from reference 2 are combined with some unpublished test results.

These combined data show the variation of flutter-speed index with Mach

number for an aspect-ratio-4, taper-ratio-O.2, 45° sweptback wing. As

shown, there also is a difference in the data at a Mach number of 1.3.

These data were obtained in the same two tunnels used in the present

investigation. In addition to the experimental data, some calculated

flutter boundaries for this same wing are presented in figure 8. These

calculations (unpublished), based on the method of reference 3 and made

by Yates, agree well with the experimental data and support the conclu-

sion that a difference such as occurred in the present investigation can

result solely from a variation in the density. The data of reference 4
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also indicate that appreciable scatter in flutter data results if

density changes are large.

The flutter boundary curves in figure 9 show the relative flutter

susceptibility of the three planforms over the Mach number range of the

investigation. In this figure the dynamic pressures for flutter for

a given planform of the different constructions, B, C, D, and E, are

adjusted to what would result for construction A and then normalized
to the minimum adjusted dynamic pressure of the 25 ° configuration.

This adjusted dynamic pressure is obtained from the following simple

relationship between the flutter-speed indices for models of a given

planformbut of different construction:

V 2

(where A represents construction A and

C, D, and E). This equation thus yields

qadJ =

J represents constructions B,
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Ah low speeds the 60 ° and 75 ° sweptback wingsrequire dynamic pres-

sures for flutter_ respectively, 1.6 and 2.4 times that required for

the 25 ° sweptback wing. It may be noted that the transonic dip in

dynamic pressure for flutter occurs at progressively higher Mach num-

bers and is less severe as the sweepback angle is increased. All three

planforms indicate a favorable trend in Mach number effect following

the transonic dips. It should be remembered, however, that for the

present models, as the sweep angle was increased, certain changes in

stiffness (and torsion frequency, see table I) were obtained and this

change in stiffness, of course, influences the relative flutter suscep-

tibility of the different planforms. If on the variable-sweep wing a

different change in stiffness with sweep angle were obtained, as might

be expected with a pivot joint, the relative flutter susceptibility

would be different.

Also shown in figure 9 are two curves of constant altitude. The

actual altitudes simulated by these curves, of course, depend upon the

scale factor required to relate the dynamic pressure for the model to

the dynamic pressure for the airplane. However, the altitude lines

shown with the flutter boundaries emphasize that the relative flutter

I
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susceptibility of the different sweep positions would have to be con-

sidered when programlng the wing-sweep changes for a particular flight
plan.

CONCLUSIONS
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The results of a flutter trend investigation in the Langley tran-

sonic blowdown tunnel and in the Langley 9- by 18-inch supersonic aero-

elasticity tunnel of very simple models of a tapered variable-sweep

wing design indicate the following conclusions:

1. At low speeds the 60° and 75° sweptback_ings required, respec-

tlvely, 1.6 and 2.4 times the dynamic pressure of the 2_° sweptback

wing for flutter.

2. The transonic dip in dynamic pressure for flutter occurred at

progressively higher Mach numbers and was less severe as the sweepback

angle was increased.

3. A favorable trend in Mach number effect for all three planforms

followed the transonic dips.

4. A difference in the data from the two tunnels was obtained and

indicates that careful consideration should be given to the mass-density

ratio as a design factor when testing flutter models in different tunnels.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base# Va., July 20_ 1961.
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TAE_ I.- PHYSICAL CH/LRACTERISTICS OF MOIELS INVESTIGATED
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Type of Model Configuration I Panel I m, fh, l, fh,2,

construction I I slugs cps cps

A = 25o; S = 0.1191 sq ft

A

A

C

C

C

E

E

E

E

E

cps

Full span

Full span

Full span

Full span

Semlspan

Semispan

Semlspan

Semlspan

Semispan

Semispan

Left

Right

Left

Right

0.00276

•00276

•00252

.00252

.00269
•002_0

•00231

•O0231

.0024-2

.00239

91

90
75
76

81

62

%
99
58
61

A = 600; S = 0.1105 sq ft

_3 675 I
314 690 I

26O 519 i
268 522 I

294. 51o I
238 460 I
225 _47 I
230 47o I
240 455 I
24.2 4.60 I

9
9

I0

I0

ii

11

12

13

15

16

16
17
18
19
2O

21

22

Full span

Fullspan

Fullspan

Fullspan

Full span

Full span

Semispan

Semispan

Semlspan

Semlspen

Left

Rt6ht
Left

Right

Left

Right

o. 00290

.00_)0

.0o28]_

• 00281

• 00250
• 0024-8
.00266
• 00259

.OO2_

.00257

120

121

100

100

97

%
75
74
69

7_

A = 750; S = 0.1068 sq ft

Fullspan

Fullspan

Semlspan

_span

Semlspan

Semlspan

Semlspan

Semtspan

Left

Right

O. 00287

.00287
• 0024.8

•0o259
.oo2_,,
•00229
.002_
•00237

i_5
139
lll

i01

76
79
85
85

fh,_cps 1 fh' I/f_ fh' 2/f_

690

717

605

622

665
593
523
5_
%7
560

375 778 920

370 750 890
328 6_5 758

.530 64.0 765
310 600 699

302 600 .....

260 500 600

263 514 6OO

250 4.80 575

271 500 6_0

791

796
6_5
615

927
522
550
590

433
451
375
%0

300
300
308

0.13

.13

.15

.15

.16

.13

.13

.13

.13

.13

0.45
.46

.50

.51

•58

.52

.50

.49

.53

-53

0.15
.16

.16

.16

.16

.16

-15

.14

.14

.15

0.48

.49

.51

.52

.52

.50

.52

.51

•52

i,0_0

i,050
833
8OO
625
7OO
69O

700

0.18

.17

.17

.16

.14

.15

.15

.15

0.55

.99

.50

.57

.55

•56
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Figure I.- Planforms of models investigated.
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Figure 2.- Photograph of a model (construction E) with portion of silk covering removed. k_
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Figure 6.- Variation of flutter-speed index with Mach number for the three planforms investigated.
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Figure 7.- Comparison of density ranges in the Langley transonic blowdown tunnel and the
supersonic aeroelasticity tunnel.
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